Lab3

Creating a multitasking system that uses a keypad and user input to control the
frequency of two LED blinking lights.

By: Maddy Reedy and Sabrina Luo
ME 305 - 01

s
S‘L

w
Cc A L P O L Y

To: William R. Murray, Department of Mechanical Engineering, Cal Poly SLO
wrmurray@calpoly.edu
From: Maddy Reedy Sabrina Luo
MaReedy@calpoly.edu Sluol0@calpoly.edu
Date: 04/10/25
RE: Lab 3 Memo — Cooperative Multi-Tasking LED Blinker with Robust I/O Interface
Abstract

The overall goal of lab 3 was to create a multitasking system that would use a keypad and user input to
control the speed of two LED blinking lights. The user would use the keypad to input a time in milliseconds,
for one of the two blinking lights. The input digits would be displayed on an LCD screen, once the user
presses enter the lights will begin to blink at the frequency displayed on the LCD screen. Each of our
functions is managed as separate tasks that work together by taking turns, rather than using interrupts. This
lab taught us how finite state machines and multitasking can be used to create responsive and organized
systems.

Tasks

Task 1: Mastermind - Direct and control the other tasks such as determining which keys have been stuck

State 0: All MasterMind initialization of both hardware and software to be carried out or initiated
in this state.

State 1: Wait until all initialization and initial display prompt is complete.

State 2: The Hub to check whether a struck key is waiting to be implemented. If no ASCII value
is there, MasterMind will return and allow the next task to be executed. If ASCII value is pressed, the
MasterMind will determine which key was pressed and set to the next state

State 3: If the ASCII value turns out to be a digit, and appropriate actions for a digit are taken for
example, it will load that digit to the appropriate LCD address up to five addresses. It will then return to the
hub state.

State 4: If the ASCII value turns out to be a function key, it would take appropriate actions for the
function key, such as clearing buffer. It will then return to the hub state.

State 5: If the ASCII value turns out to be a BackSpace, it would take appropriate actions for the
Backspace key. The cursor would have to sent back in addition to clearing the value in that address. It will
then return to the hub state.

State 6: If the ASCII value turns out to be an Enter key, it would take appropriate actions for the
Enter key, for example, converting BUFFER to a readable number and starting the process of the lights and
the timings. It will then return to the hub state.

Task 2: Key Driver - To monitor and determine if keys have been struck and to report the ASCII values
of the struck keys to Mastermind.

State 0: Initialize keypad drive (both hardware and software) and clear key flag.

State 1: Checks whether a key is pressed. If so, it will get Character, store the value, and raised the
flag that a key has been pressed.

State 2: Test key flag and wait for MasterMind to acknowledge whether the current key is received.

Task 3 — Display- To carry out printed messages and data on the LCD module that seen from the
MasterMind

State 0: Initializes all Display (both hardware and software) to be carried out

State 1: The hub state checks whether Boolean flags are set which determines if a specific message
should be displayed. Display will set to a specific state that corresponds to the display of the selected
message.

State 2: Displays the message stored in TIME]1 at the upper left corner.
State 3: Displays the message stored in TIME 2 at the lower left corner.
State 4: Displays the message stored in FIPRMPT to column 8 of the first line on the LCD screen.

State 5: Displays the message stored in F2PRMPT to column 8 of the second line on the LCD
screen.

Task 4: Pattern 1- Sets the for the first set of LED pattern
State 0: Set the first set of lights as PORTP outputs and ensure that the LEDs and the flag are off
State 1: LEDs are OFF until the ON1 key has been set
State 2: Lights up Green LED but have Red LED off.
State 3: Turns Green LED off.
State 4: Keep Green LED off but turn Red LED on
State 5: Turns Red LED off

State 6: Turns both LEDs on

Task 5:

Task 6:

off

Task 7:

Task 8:

State 7: Turns both LEDs off

Timing 1 - The time it takes for the first set of lights to execute the pattern from Task 4
State 0: Initializes timing and clears the done flag
State 1: Waits to see if the first set of lights are to be on and the preparations for a countdown

State 2: Start and execute the countdown

Pattern 2 - Sets the for the second set of LED pattern

State 0: Set the second set of lights as PORTP outputs and ensure that the LEDs and the flag are

State 1: LEDs are OFF until the ON2 key has been set
State 2: Lights up Green LED but have Red LED off.
State 3: Turns Green LED off.

State 4: Keep Green LED off but turn Red LED on
State 5: Turns Red LED offtOppOpji

State 6: Turns both LEDs on

State 7: Turns both LEDs off

Timing 2 - The time it takes for the second set of lights to execute the pattern from Task 6
State 0: Initializes timing and clears the done flag
State 1: Waits to see if the first set of lights are to be on and the preparations for a countdown

State 2: Start and execute the countdown

Count — sets a delay
State 0: Initializes Task 8

State 1: Goes to the delay subroutine which delays for 1ms.

Inter-Task Communication Variables

‘ Variable ‘ Meaning ‘ Tasks Used Tasks Cleared

TICKS_ 1 Period for first LED pair in | Task 5: State 1 Task 1: State 0
milliseconds Task 1: State 2
COUNT_1 Time remaining in period | Task 5: State 1
for first LED pair in Task 5: State 2
milliseconds
DONE_1 Boolean indicating change | Task 5: State 2 Task 5: State 0
time for first LED pair Task 5: State 1
ON1 Boolean indicating first Task 1: State 6 Task 1: State 2
LED pair operation state Task 4: State 0
TICKS_2 Period for second LED Task 1: State 6 Task 1: State 0
pair in milliseconds Task 1: State 2
Task 6: State 0
COUNT_2 Time remaining in period | Task 7: State 1
for second LED pair in Task 7: State 2
milliseconds
DONE_2 Boolean indicating change | Task 7: State 2 Task 7: State 0
time for second LED pair Task 7: State 1
ON2 Boolean indicating second | Task 1: State 6 Task 1: State 0
LED pair operation state Task 1: State 2
COUNT Number of digits currently | Task 1: State 3 Task 1: State 0
in BUFFER Task 1: State 5
BUFFER Buffer containing digits Task 1: State 3 Task 1: State 4
from keypad Task 1: State 6
TEMP Used in ASCII 2 Bin Task 1: State 6 Task 1: State 0
conversion routine Task 1: State 2
Char_addr Used to clear specific LCD | Task 1: State 2 Task 1: State 2
addresses locations
error_ON Flag to indicate there is an | Task 1: State 3 Task 1: State 0
error
errorl_ON Flag to indicate error 1 has | Task 1: State 3 Task 1: State 0
been triggered Task 1: State 6 Task 1: State 2
error2_ON Flag to indicate error 2 has | Task 1: State 6 Task 1: State 0
been triggered Task 1: State 2
errordelay Period that message will be | Task 1: State 3 Task 1: State 0
delayed Task 1: State 2
delaycount Amount of time error Task 1: State 3 Task 1: State 2
message delay will run Task 1: State 6
F1FLAG Flag to indicate F1 was Task 1: State 3 Task 1: State 2
pressed Task 1: State 6
F2FLAG Flag to indicate F2 was Task 1: State 2 Task 1: State 0
pressed Task 1: State 2
Task 1: State 6
KEY_BUF Buffer for most recent Task 1: State 2 Task 1: State 0
character Task 1: State 2
Task 1: State 6
KEY_FLG Boolean for key is Task 2: State 1 Task 1: State 2
available for MM Task 2: State 0

DTIME1 Boolean to display Task 1: State 0 Task 3: State 2
“TIME1 = Task 3: State 1
DTIME2 Boolean to display Task 1: State 0 Task 3: State 3
“TIME2 = Task 3: State 1
DF1PRMPT Boolean to display “<F1> | Task 1: State 0 Task 3: State 4
to update LED1 Task 3: State 1
period”
DF2PRMPT Boolean to display “<F2> | Task 1: State O Task 3: State 5
to update LED2 Task 3: State 1
period”
FIRSTCH Boolean for first char in Task 3: State 0 Task 3: State 2
DISPLAY subroutine Task 3: State 2 Task 3: State 3
Task 3: State 3 Task 3: State 4
Task 3: State 4 Task 3: State 5
Task 3: State 5
DPTR Address if next charter in Task 3: State 2
current message Task 3: State 3
Task 3: State 4
Task 3: State 5
tlstate State Variable for Task 1
t2state State Variable for Task 2 Task 1: State 0 Task 1: Mastermind
Task 1: State 1
Task 1: State 2
Task 1: State 3
Task 1: State 4
Task 1: State 5
Task 1: State 6
t3state State Variable for Task 3 Task 2: State 0 Task 2: Mastermind
Task 2: State 1
Task 2: State 2
t4state State Variable for Task 4 Task 3: State 0 Task 3: Mastermind
Task 3: State 1
Task 3: State 2
Task 3: State 3
Task 3: State 4
Task 3: State 5
t5state State Variable for Task 5 Task 4: State 0 Task 4: Mastermind
Task 4: State 1
Task 4: State 2
Task 4: State 3
Task 4: State 4
Task 4: State 5
Task 4: State 6
Task 4: State 7
t6state State Variable for Task 6 Task 5: State 0 Task 5: Mastermind
Task 5: State 1
Task 5: State 2
t7state State Variable for Task 7 Task 6: State 0 Task 7: Mastermind
Task 6: State 1

Task 6: State 2
Task 6: State 3
Task 6: State 4
Task 6: State 5
Task 6: State 6
Task 6: State 7

t8state State Variable for Task &8 Task 7: State 0 Task 7: Mastermind
Task 7: State 1
Task 7: State 2

Table 1. List of Inter-Task Communication Variables Meaning and There Set and Reset Locations
Finite State Machines

Task 1

STATE |

onnel = o
DTIME2 = o
D F1PRHPT « O
DF2 PRHPT <0

Figure 2. Finite State Machine for Task 1

Task 2

Always /t2state=1

Jhate 1.

Check for &

KCS

LKEY:l/KE‘f_ FLa=1 qgnd
t2state=2

Figure 2. Finite State Machine for Task 2

Task 3

Task 4

Always /s ate=1

DTTMELZ=1f
t3state=2

1‘-35‘}01:—1 IDTIME]_ o
D;—3S+.aic 3/
PRMT= ‘-S.singﬁ 1/
D"«ez
DTIMEz- 1/
DF2PRMT=1/ %
-35.0{6 5

13state=H DF1PRMPT = 1/
DFL? mpT® tastate=t

State 4.
display
F1PRMPT

Figure 3. Finite State Machine for Task 3

DONE.1=V [Gi.LED-1 = agd
R-LED-1=0 DoNE-1=0

Done. 1 =

ONIz 0

DONE.1=1 |/ CG1.LED-) =)
R_LED. I=p

Done. 1 =0
OONE.1=\ | (1.LED-1 =)
R_LED. 1=

DONE.|=0

DONE.1=1 /| Gi.LED-1 =0
R_LED- 1zp

DONE.1=\ /| CGi.LED-\ =D
R_LEeD. =0

OONE.1=1/ CGi1.LED-1 =D

R LeD. 12] DoNE-1 =0

DoNE-1 =0

Figure 4. Finite State Machine for Task 4

Task 5

Task 6

Always [tSstate = 1

DONEL1 /4 Sotate=1

State 2.

Check and
coun bdown

State 1.
Check and

vp

ON1=1/4 Sgtate-2

Figure 5. Finite State Machine for Task 5

DONE.2=1 [Gi_LED-2=p
R_LED.2:z¢

ONa =1
DoNE-3=0
Done_ =0

ON3: 0 DONE.3=\ [/ (1.LED-3=)
Doue-a:o) R_LED.a:O
DONE.2=\ | Gr1.LED-2=)

R_LED-2 =)

Done_ =0

DONE.)=\ [Gi_LED-2= 0
R_LED-2:=p

DONE.g=\ | Gi.LED-2=pO
R_LEeD. 2=0

OONE. 2=\ /1.LED-2= O
R_LeD.2= |

DONE.R=0

Done.3=0

Figure 6. Finite State Machine for Task 6

Task 7

Always [t¥state = 1

OONELZ=L /4 Joigte=

Shate 1.
Check and

prep

ON2=1 /4 3state=2

Figure 7. Finite State Machine for Task 7

Task 8

Al wa\d S

STATE | :

pPerform
cevay

Ims

always

Figure 8. Finite State Machine for Task 8

Source Code

,-*********************k**************************k*************k*************************

*

;* Lab 3 main [shell code from standard version]

*
;***
*

.ok

;

*

;* Author: Maddy Reedy & Sabrina Luo

*

;* Cal Poly University
*

;* May 2025 *

. K
’
*

,-***

; The following are external files to be included during assembly

; All labels that are referenced by the linker need an external definition

XDEF main

; All labels from other files must have an external reference

XREF ENABLE MOTOR, STARTUP MOTOR, UPDATE MOTOR, DISABLE MOTOR
XREF STARTUP_PWM, STARTUP ENCODER, READ ENCODER, DISABLE ENCODER
XREF OUTDACA, OUTDACB

XREF INITLCD, CLRSCREEN, SETADDR, GETADDR, CURSOR ON, DISP OFF
XREF OUTCHAR, OUTCHAR AT, OUTSTRING, OUTSTRING AT

XREF INITKEY, LKEY FLG, GETCHAR

XREF Entry, ISR KEYPAD

;| Assembler Equates

; Constant values can be equated here

PORTP
DDRP

G LED 1

R LED 1
LED MSK 1
G LED 2

R LED 2
LED MSK 2

Fl

F2

BSPACE
ENT

SPACE

Ll lim

Fl start
F2 start
Fl delete
delete

F1l end
mes delay
L1 start
L2 start

; The following variables are located in

DEFAULT RAM:

TICKS 1
COUNT 1
DONE_1
ON1

TICKS 2

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$0258

$025A

$00010000
%$00100000
%$00110000
$01000000
%$10000000
$11000000

SF1
SF2
$08
SOA
$20
5

$06
$46
$08
$20
$16
SFF
$07
$45

SECTION
; State Variables

DS.
DS.
DS.
DS.

DS.

W w = =

I

output port for LEDs

green LED output pin for LED pair 1
red LED output pin for LED pair 1
LED pair 1

green LED output pin for LED pair 2
red LED output pin for LED pair 2
LED pair 2

unpaged ram

period for LED pair 1 [ms]

time remaining in period for LED pair 1 [ms]
Boolean indicating change time for LED pair 1
Boolean indicating LED pair 1 operation state

period for LED pair 2 in [ms]

COUNT 2
DONE_2
ON2

COUNT
BUFFER
RESULT
TEMP

Char addr

error ON
errorl ON
error2 ON
errordelay
delay count

F1FLAG
F2FLAG

KEY BUF
KEY FLG

DTIME1
DTIME2
DF1PRMPT
DF2PRMPT

FIRSTCH
DPTR

tlstate
t2state
t3state
t4state
t5state
téstate
t7state
t8state

L1 chars
L2 chars
temp

COUNT char

DS.
DS.
DS.

DS.
DS.
DS.
DS.
DS.

DS.
DS.
DS.
DS.
DS.

DS.
DS.

DS.
DS.

DS.
DS.
DS.
DS.

DS.
DS.

DS.
DS.
DS.
DS.
DS.
DS.
DS.
DS.

DS.
DS.
DS.
DS.

w

w W ww w w =S W = W w

W W ww

=

W W wwwwww

W W ww

=W O e

e

=R e e

e T = T = T = S Sy

=R e e

time remaining in period for LED pair 2 [ms]

Boolean
Boolean

indicating change time for LED pair 1
indicating LED pair 2 operation state

number of digits currently in BUFFER

buffer containing digits from keypad
result for ASCII->BCD->binary F
used in ASCII 2 Bin conversion routine

flag to
flag to

indicate F1l was pressed
indicate F2 was pressed

buffer for most recent character

Boolean

Boolean
Boolean
Boolean
Boolean

Boolean
address

for key is available for MM

to disp "TIMEl = "
to disp "TIMEZ2 "
to disp "<F1> to update LED1 period"
to disp "<F1> to update LED1 period"

for first char in DISPLAY subroutine
of next charter in current message

state variables for each of the tasks

\
;1 Main Program Code
|
P\
/
; This file contains partial shell code for Lab 3 for ME 305
MyCode: SECTION
main:
clr tlstate ; initialize all tasks to state0
clr t2state
clr t3state
clr tdstate
clr tSstate
clr téstate
clr t7state
clr t8state
Loop: ;bgnd
jsr TASK 1
;bgnd ; execute tasks endlessly
jsr TASK 2
jsr TASK 3
;bgnd
jsr TASK 4
;bgnd
jsr TASK 5
;bgnd
jsr TASK 6
; bgnd
jsr TASK 7
;bgnd
jsr TASK 8
bra Loop
j=============TASK 1
MasterMind===
TASK 1: ldaa tlstate ; get current tlstate
lbeg tlstatel
deca
lbeqg tlstatel
deca
lbeqg tlstate2
deca
lbeqg tlstate3
deca
lbeqg tlstated
deca

lbeqg tlstateb
deca

lbeg tlstateo6

rts ; undefined state - do nothing
tlstatel: ; initialization state for TASK 1
clr COUNT ; MasterMind initialization

clr F1FLAG

clr F2FLAG

clr ON1

clr ON2

clr error ON

clr errorl ON

clr error2 ON
movw #$00, TICKS 1
movw #$00, TICKS_2
clr TEMP

ldaa #3501 ; set flags to display all four prompts
staa DTIME1

staa DTIME2

staa DF1PRMPT

staa DF2PRMPT

movb #$01, tlstate ; otherwise, set next state
rts

tlstatel: ; wait for splash screen to display
tst DTIME1 ; finished with TIMEl prompt?
bne tlsla ; exit if not done
tst DTIME2 ; finished with TIME2 prompt?
bne tlsla ; exit if not done
tst DF1PRMPT ; finished with F1 prompt?
bne tlsla ; exit if not done
tst DF2PRMPT ; finished with F2 prompt?
bne tlsla ; exit if not done
movb #$02, tlstate ; set next state

tlsla: rts

tlstate2: ; decode input state
tst error ON
lbne error delay

tst KEY FLG ; check for key stroke
bne tls2a ; skip over exit code if char available
rts

; return if no char available

tls2a:
ldab KEY BUF ; get character
tst F1FLAG ; if F1IFLAG has been set,
bne tls2d ; skip test on Fl1 & F2
tst F2FLAG ; 1f F2FLAG has been set,
bne tls2d ; skip test on Fl & F2
cmpb #F1 ; otherwise, check for F1 then F2
bne tls2b
movb #$01, F1lFLAG ; set F1FLAG

movb #$04, tlstate

bra
lbra
cmpb
bne

tls2b:

movb

movb

bra
tls2c:
tls2d:

bra
cmpb
bne
movb
bra
tls2e: cmpb
bne
movb
bra
tls2f:

cmpb
bhi
cmpb
blo
movb
bra

tlstate2Flsetup:

clr
movb
movw
clr
ldaa
jsr
movw
bra

tlstate2F2setup:

clr
movb
movw
clr
ldaa
jsr
movw
bra

tlstate2setup:
ldx
ldab
beg

jsr
incw
bra

tlstate2Flsetup
exit tls2

#F2
tls2c
#501,
#504,
tlstate2F2setup
exit tls2
#BSPACE

tls2e
#3505,
exit tls2
#ENT
tls2f
#506,
exit tls2

F2FLAG
tlstate

tlstate

tlstate

#$39
exit tls2
#$30
exit tls2
#503,
exit tls2

tlstate

ON1
#505, t4dstate
#500, TICKS 1
TEMP

#3507

SETADDR

#clear, Char addr
tlstate2setup

ON2
#5$05, to6state
#500, TICKS 2
TEMP

#547

SETADDR

#clear, Char addr
tlstate2setup

Char addr
0, X
tlstate2setupcomplete

OUTCHAR
Char addr
tlstate2setup

’

’

set next state accordingly

branch to exit code

set F2FLAG
set next state

neither F1 nor

set next state
branch to exit

set next state
branch to exit

compare
exit 1if
compare
exit 1if

accordingly

F2 are active,

accordingly
code

accordingly
code

to highest digit
not a valid digit
to lowest digit
not a valid digit

so exit

tlstateZ2setupcomplete:

mov
sub
jsr
bra

exit tls2:
clr
rts

tlstate3:

tlstate3Fl:
inc
lda
cmp
1bh

dec
1ldx
sta

b
a

tst
bgt
tst
bgt

a
a #
it

a
#
b

inca
ldab #

aba
ldab

#504, tlstate
$05

SETADDR

exit tls2

KEY FLG

F1FLAG
tlstate3F1l
F2FLAG
tlstate3F2

COUNT

COUNT

Ll 1lim
lstate3overload

BUFFER
A, X

Fl start

KEY BUF

jsr OUTCHAR AT

bra tlstate3end

tlstate3F2:

inc

ldaa C
cmpa #
1lbhi t

deca

1ldx

#

stab

inca
ldab #
aba

ldab

COUNT

OUNT

Ll 1lim
lstate3overload

BUFFER
A, X

F2 start

KEY BUF

jsr OUTCHAR AT

bra tlstate3end

’

’

’

done with char,

digit state

digit state

so clear KEY FLG

tlstate3overload:
dec COUNT
movb #$02, tlstate
rts

tlstate3end:
movb #$02, tlstate
rts

tlstate3 error2:
inc error2 ON
tst F1FLAG
lbne errorsetupFl
lbra errorsetupF2
tlstated:
clr BUFFER
clr BUFFER+1
clr BUFFER+2
clr BUFFER+3
clr BUFFER+4
tlstatedexit:
movb #$02, tlstate
rts
tlstate5:
tst COUNT
ble tlsbc
tst F1FLAG
beg tls5bF2
tls5b:
ldaa COUNT
ldab #F1 start
aba
ldab #delete
jsr OUTCHAR AT
jsr SETADDR
dec COUNT
bra tls5c
tls5bF2:1daa COUNT
ldab #F2_start
aba
ldab #delete
jsr OUTCHAR_AT
jsr SETADDR

’

’

set next state

set next state

; function state

; <B_SPACE> state

dec COUNT
bra tls5c

tlsbc:

movb #$02, tlstate ; set next state

rts
tlstateb6:

tst COUNT

ble tlstate6 errorl

ldaa #$35

jsr SETADDR

tst F1FLAG

lbne Conversion

tst F2FLAG

lbne Conversion?2

; If true, Turn on lights 2

tlstatebec:

clr COUNT

clr F1FLAG

clr F2FLAG

; <ENT> state
movb #$02, tlstate ; set next state
rts

tlstate6 errorl:
inc errorl ON
tst FI1FLAG
lbne errorsetupFl

lbra errorsetupF2

j=============TASK 2:
Keypad Driver
TASK 2: ldaa t2state ; get current t8state
beqg t2statel
deca
beq t2statel
deca
beq t2state2
rts ; undefined state - do nothing
t2state0: ; initialization state for TASK 2
jsr INITKEY ; initialize keypad
clr KEY FLG ; clear key available flag
movb #$01, t2state ; set next state

rts

t2statel:
tst
beg
jsr
stab
movb
movb

t2sla: rts

t2state2:
tst
bne
movb

t2s2a: rts

LKEY FLG
t2sla

GETCHAR

KEY BUF

#501, KEY FLG
#3502, t2state

KEY FLG
t2s2a
#$01, t2state

checking state

check for a key stroke

get char if available

store key value

set key available flag

set next state

waiting state

check KEY FLG handshake

set next state
end TASK 2

; =============TASK 3
Display
TASK 3: ldaa t3state get current t8state
lbeg t3statel
deca
lbeqg t3statel
deca
lbeqg t3state2
deca
lbeqg t3statel
deca
lbeqg t3stated
deca
lbeg t3stateb
rts undefined state - do nothing
t3statel: initialization
jsr INITLCD initialize the LCD module
jsr CURSOR_ON turn CURSOR ON
movb #$01, FIRSTCH set first char flag
movb #$01, t3state set next state
rts
t3statel: display task hub state
ldaa DTIME1
cmpa #5501
bne t3sla
movb #$02, t3state set next state
rts
t3sla: 1ldaa DTIMEZ2
cmpa #5501
bne t3slb
movb #$03, t3state set next state

state for TASK 3

rts
t3slb: 1ldaa
cmpa
bne
movb
rts
t3slc: ldaa
cmpa
bne
movb
t3slk: rts

t3state2:
ldaa
cmpa
bne
1ldx
clra
jsr
bra

t3s2a: Jjsr

t3s2done:
tst
beg
clr
movb

t3s2b: rts

t3statel:
ldaa
cmpa
bne
1ldx
ldaa
jsr
bra

t3s3a: Jjsr

t3s3done:
tst
beg
clr
movb

t3s3b: rts

t3stated:
ldaa
cmpa

DF1PRMPT

#501

t3slc

#$04, t3state

DF2PRMPT

#501

t3slk

#$05, t3state

FIRSTCH
#501
t3s2a
#TIMEL

PUTCHARflST
t3s2done
PUTCHAR

FIRSTCH

t3s2b

DTIME1

#$01, t3state

FIRSTCH
#501

t3s3a
#TIME2

#540
PUTCHAR 1ST
t3s3done

PUTCHAR

FIRSTCH

t3s3b

DTIME2

#$01, t3state

FIRSTCH
#501

set next state

set next state
undefined state - do nothing

display TIMEl state

address of beginning of message
set LCDaddr to upper left
display first character

go to t3s2done test

display next character

done if FIRSTCH has been reset
branch if not done

done, so set next state

display TIME2 state

address of beginning of message
set LCDaddr to lower left
display first character

go to t3s3done test

display next character

done if FIRSTCH has been reset
branch if not done

done, so set next state

display F1PRMPT state

bne t3s4a

1ldx #F1PRMPT
ldaa #3508

jsr PUTCHARflST
bra t3s4done

t3sd4a: Jjsr PUTCHAR

t3s4done:

tst FIRSTCH

beqg t3s4b

clr DF1PRMPT

movb #$01, t3state
t3s4b: rts

t3stateb:
ldaa FIRSTCH
cmpa #$01
bne t3sba
1ldx #F2PRMPT
ldaa #3548
jsr PUTCHARflST
bra t3s5done

t3sb5a: Jsr PUTCHAR

t3s5done:
tst FIRSTCH
beqg t3s5b
clr DF2PRMPT
movb #$01, t3state
ldaa #$35
jsr SETADDR
t3s5b: rts

address of beginning of message

set LCDaddr to proper place in 1st line
display first character

go to t3s4done test

display next character

done if FIRSTCH has been reset
branch if not done

done, so set next state

display F2PRMPT state

address of beginning of message

set LCDaddr to proper place in 2nd line
display first character

go to t3s5done test

display next character

done if FIRSTCH has been reset
branch if not done

done, so set next state

Pattern l====

TASK 4:
ldaa tidstate
lbeg tdstatel
deca
lbeqg tdstatel
deca
lbeqg tdstate2
deca
lbeg tdstate3
deca
lbeqg tdstated

’

get current t8state

deca
lbeg
deca
lbeqg
deca
lbeqg
rts

tdstatel:
clr
bclr
bset
movb

t4statel:
tst
beg
movb

td4sla: Dbclr
rts

t4state2:
bset
tst
beg
movb

exit tds2:
rts

tdstate3:
bclr
tst
beg
movb

exit td4s3:
rts

tdstated:
bset
tst
beg
movb

exit tds4:
rts

tdstateb:
bclr
tst

tdstateb

tdstateob

tdstate?

ON1

PORTP, LED MSK 1

DDRP,
#3501,

ON1
tdsla
#$02,

PORTP, LED MSK 1

PORTP,
DONE_1

LED MSK 1
tdstate

tdstate

G LED 1

exit tds2

#3503,

PORTP,
DONE_ 1

tdstate

G _LED 1

exit tds3

#504,

PORTP,
DONE_1
exit t
#3505,

PORTP, LED MSK 1

DONE_1

tdstate

R LED 1

4s4
tdstate

undefined state - do nothing

initialization for TASK 1

clear LED1 ON flag

ensure that LEDs are off when initialized
set LED MSK 1 pins as PORTP outputs

set next state

wait for ON1

unless ON1 is set, make sure LEDs are OFF
and simply return

else set next state

ensure that LEDs are off

G on & R off

set statel pattern on LEDs
check LED1 done flag

if not done, return

if done, set next state

both off

set statel pattern on LEDs
check LED1 done flag

if not done, return

if done, set next state

G off & R on

set statel pattern on LEDs
check LED1 done flag

if not done, return

if done, set next state

both off
set statel pattern on LEDs
check LED1 done flag

beg

movb
exit t4s5:

rts

t4stateb:
bset
tst
beg
movb

exit tds6:
rts

tdstate7:
bclr
tst
beg
movb

exit tds7:
rts

exit tds5
#$06, t4state

PORTP, LED MSK 1

DONE_1
exit tds6
#$07, t4dstate

PORTP, LED MSK 1

DONE_1
exit tds7
#$02, t4dstate

if not done, return
if done, set next state

G on & R on

set statel pattern on LEDs
check LED1 done flag

if not done, return

if done, set next state

both off

set statel pattern on LEDs
check LED1 done flag

if not done, return

if done, set next state

to be safe, hold DONE 1 down until ON1=1

when ON1 is set, get ready to count down

; =============TASK 5:
Timing 1
TASK 5: ldaa tbSstate get current t8state
beq t5statel
deca
beqg t5statel
deca
beqg tSstate2
rts undefined state - do nothing
t5statel: initialization for TASK 5
clr DONE 1 init
movb #$01, tbSstate set next state
rts
tbSstatel: initialization for TASK 5
clr DONE 1
tst ON1
beqg t5sl wait for ON1l to be set
movw TICKS 1, COUNT 1
movb #$02, t5state set next state
tb5sl: rts
tSstate2:
tst ON1
beqg t5s2a do not count down unless ONl is set
decw COUNT 1 decrement COUNT 1
bne t5s2b if not done, return
movb #$01, DONE 1 if done, set DONE 1 flag

t5s2a: movb #$01, tbstate ; set next state

t5s2b: rts ; end TASK 5
; TASK 6:
Pattern 2====
TASK 6: ldaa téstate ; get current t8state
lbeg téstatel
deca
lbeg téstatel
deca
lbeqg téstate2
deca
lbeqg téstatel
deca
lbeg téstated
deca
lbeg téstateb
deca
lbeg téstateob
deca
lbeg téstate’
rts ; undefined state - do nothing
téstateO: ; initialization for TASK 1
clr ON2 ; clear LED1 ON flag
bclr PORTP, LED MSK 2 ; ensure that LEDs are off when initialized
bset DDRP, LED MSK 2 ; set LED MSK 1 pins as PORTP outputs

movb #$01, téstate

rts

téstatel: ; wait for ON1
tst ON2 ; unless ON1 is set, make sure LEDs are OFF
beqg tésla ; and simply return
movb #$02, téstate ; else set next state

tésla: bclr PORTP, LED MSK 2 ; ensure that LEDs are off
rts

téstate2: ; G on & R off
bset PORTP, G LED 2 ; set statel pattern on LEDs
tst DONE_ 2 ; check LED1 done flag
beq exit t6s2 ; 1f not done, return
movb #$03, téstate ; 1f done, set next state

exit t6s2:

rts

téstatel:
bclr
tst
beg
movb

exit t6s3:
rts

tb6stated:
bset
tst
beg
movb

exit t6s4:
rts

téstateb:
bclr
tst
beg
movb

exit t6s5:
rts

téstateb:
bset
tst
beg
movb

exit t6s6:
rts

téstate’:
bclr
tst
beg
movb

exit t6s7:
rts

PORTP, G LED 2

DONE_2
exit t6s3
#$04, to6state

PORTP, R LED 2

DONE_2
exit t6s4
#$05, to6state

PORTP, LED MSK 2

DONE_2
exit t6s5
#$06, to6state

PORTP, LED MSK 2

DONE_2
exit t6s6
#$07, to6state

PORTP, LED MSK 2

DONE_ 2
exit t6s7
#502, tostate

both off

set statel pattern on LEDs
check LED1 done flag

if not done, return

if done, set next state

G off & R on

set statel pattern on LEDs
check LED1 done flag

if not done, return

if done, set next state

both off

set statel pattern on LEDs
check LED1 done flag

if not done, return

if done, set next state

G on & R on

set statel pattern on LEDs
check LED1 done flag

if not done, return

if done, set next state

both off

set statel pattern on LEDs
check LED1 done flag

if not done, return

if done, set next state

;=============TASK 7
Timing 2
TASK 7
ldaa t7state get current t8state
beqg t7statel
deca
beqg t7statel

deca

beq t7state2

rts ; undefined state - do nothing
t7statel: ; initialization for TASK 5
clr DONE_ 2 ; init
movb #$01, t7state ; set next state
rts
t7statel: ; initialization for TASK 5
clr DONE 2 ; to be safe, hold DONE 1 down until ON1=1
tst ON2
beq t7sl ; wait for ON1 to be set
movw TICKS 2, COUNT 2 ; when ON1 is set, get ready to count down
movb #$02, t7state ; set next state
t7sl: rts
t7state2:
tst ON2
beq t7s2a ; do not count down unless ONl1l is set
decw COUNT 2 ; decrement COUNT 1
bne t7s2b ; 1if not done, return
movb #$01, DONE 2 ; if done, set DONE 1 flag
t7s2a: movb #$01, t7state ; set next state

t7s2b: rts

; TASK 8:
Countdown
TASK 8: ldaa t8state ; get current t8state
beq t8statel
deca
beqg t8statel
rts ; undefined state - do nothing
t8statel: ; initialization for TASK 8
movb #$01, t8state ; set next state
rts
t8statel:
jsr DELAY 1lms
rts ; end TASK 8
D et Gt E et
\

; =============8ubroutine

;= Assumes standard COUNT & BUFFER scheme

;= Uses the stack to avoid declaring TEMP space in RAM

;= Returns: result in X with A cleared if no error

;= 1 in A if MAGNITUDE TOO LARGE error, and

;= 2 in a if ZERO MAGNITUDE INAPPROPRIATE error

ASCII 2 Bin:
rts ; end subroutine ASCII 2 Bin

;=============Subroutine PUTCHAR 1ST and Subroutine
PUTCHAR

PUTCHAR 1ST:
stx DPTR ; first entry point for subroutine
jsr SETADDR ; to be used for first character only
clr FIRSTCH

PUTCHAR: ; second entry point for subroutine
1ldx DPTR ; to be used for all characters but the first
ldab 0,X ; get character to be displayed
beqg disp done ; exit if last character in message
inx ; point to next character
stx DPTR
jsr OUTCHAR ; display current character
rts

disp done:

movb #5501, FIRSTCH ; reset first character flag
rts ; end subroutine PUTCHAR 1ST and PUTCHAR
; =============Subroutine

DELAY 1lms:

1dy #1425 ;i (2)
INNER: ; inside loop
cpy #0 i (2)
beq EXIT ;o (1)
dey ;o (1)
bra INNER 7 (3)
EXIT: rts ;7 (5) end subroutine DELAY 1lms

; =============Subroutine CONVERSION

i= This subroutine =

Conversion: ;bgnd
ldy TICKsS 1

ldd #SO0A ; load accumulator D with 'A'

emul

tstY

bne conversionerror?2 ; trigger error 1 if not equal to zero

std TICKS 1

ldx #BUFFER

ldaa TEMP ; load accumulator A with TEMP
ldab A, X

subb #$30 ; subtract 30 from accumulator B
clra ; clear accumulator A

addd TICKS 1
std TICKS 1

inc TEMP ; increases TEMP by 1
dec COUNT ; decreases COUNT by 1
bne Conversion ; 1f COUNT is less than or equal

; to zero loop back to

; conversion
Test Result:;bgnd
ldaa TICKS 1
aba
cmpa #$0
beg conversionerror ; 1f RESULT is equal to error2 got

; to error 2

ldaa #$00 ; load accumulator A with 0
movb #$01, ON1
clr COUNT char
clr L1 start
clr L1 chars
clr COUNT
clr F1FLAG
clr F2FLAG
; <ENT> state
movb #$02, tlstate ; set next state

rts

conversionerror:
inc errorl ON
bra errorsetupFl
conversionerror?2:
inc error2 ON
bra errorsetupFl

; =============3Jubroutine Error Messages

;= This subroutine displays one of two error messages when triggered

errorsetupFl: ; Set up top line to clear
ldaa #$07
jsr SETADDR
movw #clear line, Char addr

bra clearline ; Then branch to clear the line
errorsetupF2: ; Set up bottom line to clear
ldaa #$47

jsr SETADDR
movw #clear line, Char_addr

bra clearline ; Then branch to clear the line
clearline: 1ldx Char addr ; Clear correct line

ldab 0, X

beq errordetermine ; Then determine which error to display

jsr OUTCHAR
incw Char_ addr
bra clearline
; Find correct line and error

errordetermine: ; Turn on Error flag
inc error ON ; Set error message delay
movb #$7F, errordelay ; Set amount of times error delay will go
movb #$08, delay count

ldaa F1FLAG ; Add F1 flag to accumilator A

ldab errorl ON ; Add error 1 flag to accumilator B

aba ; Add accumilator A and B

cmpa #$02 ; If result is equal to 2 then it must be
error 1

beq errorlFl ; on the top line

; If result is not equal to 2 then
continue to search
ldaa F1FLAG
ldab error2 ON
aba
cmpa #$02
beq error2fl

ldaa F2FLAG
ldab errorl ON
aba

cmpa #$02

beq errorlF2

ldaa F2FLAG
ldab error2 ON
aba

cmpa #$02

beq error2fF2

errorlFl: ; Set up top line for error message 1
ldaa #$07
jsr SETADDR
movw #errorl, Char addr
bra errordisplay ; Then branch to display error message

errorlF2: ; Set up bottom line for error message 1
ldaa #$47
jsr SETADDR
movw #errorl, Char addr
bra errordisplay ; Then branch to display error message

error2F1l: ; Set up top line for error message 2
ldaa #$07
jsr SETADDR
movw #error2, Char addr
bra errordisplay ; Then branch to display error message

error2F2: ; Set up bottom line for error message 2
ldaa #$47
jsr SETADDR
movw #error2, Char addr

bra

errordisplay:

correct line
1dx
ldab
beg

jsr
incw
bra

error delay:
ldaa
jsr
tst
ble
dec

movb
rts

errordisplay

Char addr
0, X
error delay

OUTCHAR

Char addr
errordisplay

#535

SETADDR
errordelay

error delaycheck
errordelay

#5502, tlstate

error delaycheck:

triggered
tst
ble
dec
movb

movb
rts

line determine:
tst
bne

bra

errorresetFl:
ldaa
jsr
movw
bra

errorresetF2:
ldaa
jsr
movw
bra

delay count

line determine
delay count
#$7F, errordelay

#3502, tlstate

F1FLAG
errorresetFl

errorresetF2

#3507
SETADDR

#F1PRMPTRS, Char addr

errorresetdisplay

#547
SETADDR

#F2PRMPTRS, Char addr

errorresetdisplay

errorresetdisplay:

ldx

Char addr

’

’

’

Then branch to display error message

Display correct error message on the

Then branch to error message delay

Delay error message sO user can read

Turn off cursor

See if delay is zero

; If zero branch to error delaycheck
; Else decrement error delay

Declare Task 1 function state to be
Return to Mastermind

Check how many times delay has been
Check is delay count is zero
; If zero branch to line determine
; Else decrement delay count

; and reset error delay to 127 ms

Declare Task 1 function state to be
Return to Mastermind

Find which line to reset

Set up top line to display propmt 1

Set up bottom line to display propmt 2

Display propmt on proper line

errorreset:

ldab 0, X
beq errorreset ; Once displayed branch to errorreset

jsr OUTCHAR
incw Char addr
bra errorresetdisplay

; Resets flags, buffer and display

ldaa #$35

jsr SETADDR

clr BUFFER

clr BUFFER+1

clr BUFFER+2

clr BUFFER+3

clr BUFFER+4

clr COUNT

clr F1FLAG
clr F2FLAG

clr errorl ON
clr error2 ON

clr error ON

movb #$02, tlstate ; Declare Task 1 function state to be
rts ; Return to Mastermind

===Subroutine CONVERSION 2

;= This subroutine =

Conversion2: ;bgnd

1dy TICKS 2

ldd #SO0A ; load accumulator D with 'A'

emul

tstY

lbne conversionZ2error?2 ; trigger error 1 if not equal to zero

std TICKS 2

ldx #BUFFER

ldaa TEMP ; load accumulator A with TEMP
ldab A,X
subb #$30 ; subtract 30 from accumulator B

clra ; clear accumulator A

addd TICKS 2
std TICKS 2

inc TEMP ; increases TEMP by 1
dec COUNT ; decreases COUNT by 1
bne Conversion?2 ; 1f COUNT is less than or equal

; to zero loop back to
; conversion

Test Result2:1daa TICKS 2

aba
cmpa #$0
lbeqg conversion2error ; 1f RESULT is equal to error2 got
; to error 2
ldaa #$00 ; load accumulator A with 0
movb #$01, ON2
clr COUNT char
clr L1 start
clr L1 chars
clr COUNT
clr F1FLAG
clr F2FLAG
movb #$02, tlstate ; set next state
rts
conversion2error:
inc errorl ON
lbra errorsetupF2
conversion2error2:
inc error2 ON
lbra errorsetupF2
; =============ASCII
Messages
TIMEL: DC.B 'TIMEl = ',$00
F1PRMPT: DC.B ' <F1> to update LED1 period', $00
TIME2: DC.B 'TIME2 = ',$00
F2PRMPT: DC.B ' <F2> to update LED2 period', $00
clear: DC.B ! ', $00
errorl: DC.B 'ZERO MAGNITUDE INAPPROPRIATE', $00
error2: DC.B 'MAGNITUDE TOO LARGE', $00
clear line: DC.B ! ', $00
F1PRMPTRS: DC.B ' <F1> to update LEDl period',$00
F2PRMPTRS: DC.B ' <F2> to update LED2 period', $00
e R R R

;| Vectors

; Add interrupt and reset vectors here:

ORG SFFFE ; reset vector address
DC.W Entry
ORG SFFCE ; Key Wakeup interrupt vector address [Port J]

DC.W ISR KEYPAD

